
 CGC International Journal of Contemporary Technology and Research
 ISSN: 2582-0486 (online) Vol.-6, Issue-1; DOI: 10.46860/cgcijctr.2024.04.10.370

CGCIJCTR 2023 www.cgcijctr.com page 370
© All Rights Reserved to CGCIJCTR

A statistical model for estimating size and productivity

ratio in SDLC

Anuj Kumar Gupta*

Department of Computer Science and Engineering, Chandigarh Group of Colleges, Landran, Mohali, PB, India

*Email ID: cgccoe.cse.anuj@gmail.com

Abstract: During a software development life cycle, one has to estimate the effort and schedule required to produce a

software unit. Estimates for The effort and schedule are derived from other measurements such as size and

productivity Ratio. Size may be estimated using methods such as Function Point, WBS, LOC, etc., and the

Productivity Ratio is expressed as Size / Time to complete the Unit of Software. Such estimates are static and do not

consider real-time Parameters which cause variations from the estimate. In this paper, a statistical model for Size and

Productivity Ratios is derived using Historical values after considering several factors influencing the size and the

productivity ratio of produced software. Typically, an estimate of the effort and schedule is required to complete. A

software work product an enhancement request or a software fix. We use Function Points or WBS to estimate the size

of the software in consideration. We use baseline values for estimating productivity Ratios. Real-time values however

differ from Baseline values as they are influenced by several factors. Here are some factors which would influence the

Actual Size of the software Later on we will use Statistical techniques of Multivariable Parameter estimation and

logistic Regression to derive run time equations of Size and Productivity Ratio.

Indexed Terms: SDLC, statistical model, size, productivity ratio

.

I. INTRODUCTION TO SDLC

SDLC, or Software Development Life Cycle, is a

structured approach to developing software

applications. It encompasses a series of phases that

guide the entire process from conception to

deployment and maintenance. The typical phases

include planning, analysis, design, implementation,

testing, deployment, and maintenance. Each phase has

its specific objectives, activities, and deliverables,

ensuring that the software development process

progresses systematically and efficiently. Adhering to
SDLC helps in managing resources effectively,

controlling costs, ensuring quality, and delivering

software that meets stakeholders' requirements. It

provides a framework for collaboration among

developers, testers, project managers, and

stakeholders, fostering communication and alignment

throughout the development lifecycle. Overall, SDLC

serves as a roadmap for delivering high-quality

software solutions on time and within budget (See

Figure 1).

Fig 1: SDLC

There are several types of Software Development Life

Cycle (SDLC) models, each with its unique approach

to managing the software development process. Some

common types of SDLC models include the waterfall

Model, Agile Model, Iterative Model, Spiral Model,

Incremental Model & Rapid Application Development

Model. These are just a few examples of SDLC

models, and there are variations and hybrids tailored to

specific project requirements and organizational

preferences. (See Figure 2).

Fig 2: SDLC Models

Choosing the right SDLC model depends on factors

such as project size, complexity, timeline, and

stakeholder preferences.

II. FACTORS THAT INFLUENCE SIZE

The following are the key factors that influence the

size of software [1, 2]:

A. Scope Creep: If there is a scope creep in the project,

i.e., If the requirements phase has a deviation or

defects, this would affect the actual size.

B. Code Review: This would have an effect on the size

as a Peer review of the code can ensure that the

minimum size is applied to the functions required to

generate the code [3]

C. Developer Skill Level: The skill level of the

developers would affect the size.

D. Usage of Model: If a model is used for estimating

size it makes a lot of assumptions. For example, the

mailto:cgccoe.cse.anuj@gmail.com

 CGC International Journal of Contemporary Technology and Research
 ISSN: 2582-0486 (online) Vol.-6, Issue-1; DOI: 10.46860/cgcijctr.2024.04.10.370

CGCIJCTR 2023 www.cgcijctr.com page 371
© All Rights Reserved to CGCIJCTR

Function Point methodology is platform independent,

but, sometimes there may be a loss of accuracy in

predicting the actual Size when this factor is used for

conversion from Function Point to LOC [4]

E. Object code: Use of Object code to nest

functionality. If the size estimation Model uses linear

supposition to add size to functions then Using Object

code in the form of Dynamic Link Libraries etc., will

reduce the size of the software [5].

Let us also take into account some factors, which

do not have an impact and measure the co-relation

with the size and the productivity ratio:

1. Highest degree obtained

2. Gender of the developer

III. REGRESSION ANALYSIS

Regression analysis is a statistical method used to

study the relationship between a dependent variable

and one or more independent variables. Its primary

goal is to understand how the dependent variable

changes as the independent variables vary.

Regression analysis can be used for prediction,

inference, and hypothesis testing. Here is a sample of

tabulated values for the different factors taken into

consideration. The analysis has been computed in

Table 1, where the code size is in LOC, and the other

values are in percentage [6].

TABLE 1: ACTUAL LOC AS A FUNCTION OF THE DIFFERENT FACTORS WHICH WOULD INFLUENCE THE SIZE

Actual Size
Skill

RSI
Code Machine

Level Review Automation

4,000.00 1.00 100.00 0.00 0.00

3,400.00 2.00 100.00 0.00 0.00

3,300.00 3.00 100.00 0.00 0.00

3,200.00 4.00 100.00 0.00 0.00

3,000.00 5.00 50.00 0.00 0.00

6,000.00 5.00 0.00 0.00 0.00

3,500.00 5.00 100.00 0.00 0.00

3,750.00 5.00 75.00 100.00 0.00

3,200.00 5.00 100.00 50.00 0.00

3,217.00 5.00 100.00 100.00 0.00

3,200.00 5.00 100.00 100.00 10.00

3,100.00 5.00 100.00 100.00 20.00

3,000.00 5.00 100.00 100.00 50.00

IV. REGRESSION EQUATION

The generation steps of a regression model

equation typically involve several key steps:

i. Define the problem

ii. Collect data

iii. Explore data

iv. Choose a model

v. Specify the model

vi. Estimate coefficients

vii. Evaluate the model

viii. Interpret the results

ix. Use the model for prediction

x. Validate the model

The regression was run using an Excel tool

assuming linear relations [7, 8] and the result

obtained was:

Actual Size = -4.39*Skill Level + 21.64*RSI + -

0.38*Code Review + -11.53*Machine Automation +

1378.40 (+/- 1569.33) ---(i)

For the same example, the Predicted Size using a

model such as FP is 3500 LOC.

Equation Parameters

R Square 0.9970

Adjusted R Square 0.9951

Standard Error 2.4460

F - Statistic 506.8929

Multiple Regression Equation

Independent Analysis

R Squared Gradient Intercept

13.15% 20.00 8.33

86.55% 14.23 59.87

 Coefficients Standard Error

Intercept -20.128 7.056

Skill Level 20.000 1.730

Reusable Code 14.231 0.480

 CGC International Journal of Contemporary Technology and Research
 ISSN: 2582-0486 (online) Vol.-6, Issue-1; DOI: 10.46860/cgcijctr.2024.04.10.370

CGCIJCTR 2023 www.cgcijctr.com page 372
© All Rights Reserved to CGCIJCTR

Auto Correlation Statistics

Dl = 1.08

Du = 1.36

DW-Stat

2.25

2.53

V. SOME FACTORS THAT INFLUENCE THE

PRODUCTIVITY RATIO ARE

A. REUSABLE CODE: If the entire application can be

automatically engineered this would make the

application skill-independent and would enhance

productivity [9, 10].

B. SKILL LEVEL: An experienced developer would

produce better than an experienced developer.

C. SHIFT TIMINGS: Daytime work is more

productive than nighttime work.

Some sample values for the different parameters under

which the real-time Productivity Ratio would vary

were taken into consideration [11, 12, 13].

Skill Level Reusability Ratio

4.00 0.00 60.00

3.00 0.00 40.00

4.00 3.00 100.00

4.00 4.00 120.00

4.00 5.00 130.00

The equation obtained due to multi-variable

regression analysis using an Excel tool.

Productivity Ratio = 20.00*Skill Level +

14.23*Reusable code + -20.13 (+/- 2.45) ---(ii)

The baseline value which was taken in this

company was 80 tested lines per day. But in reality,

due to factors of influence and positive observed

correlation, the Actual productivity ratio varies as the

linear equation suggests [14, 15].

VI. CONCLUSION

Projects derive estimates using baseline values.

But frequently these baseline values are correlated

with other measures. In this paper, two measurements

Size and Productivity ratio, which are used to derive

measurements such as Effort and Schedule, have been

taken into consideration. Using sample values, a real-

time regression equation was derived to show that the

actual values vary concerning some parameters.

REFERENCES

[1]. Sudhakar G.P, Farooq A, Patnaik S (2012) Measuring

productivity of software development team. Serbian

Journal of Management 7: 65–75.

[2]. Nwelih E, Amadin I.F (2008) Modeling software reuse

in traditional productivity model. Asian Journal of

Information Technology 7: 484–488.

[3]. M. Azzeh, A. B. Nassif, and S. Banitaan, “Comparative

analysis of soft computing techniques for predicting

software effort based use case points,” IET Software,

vol. 12, no. 1, pp. 19–29, 2018.

[4]. M. Hosni, A. Idri, A. Abran, and A. B. Nassif, “On the

value of parameter tuning in heterogeneous ensembles

effort estimation,” Soft Computing, vol. 22, no. 18, pp.

5977–6010, 2017.

[5]. Bluemke, Ilona, and Agnieszka Malanowska. "Software

testing effort estimation and related problems: A

systematic literature review." ACM Computing Surveys

(CSUR) 54, no. 3 (2021): 1-38.

[6]. Mustafa, Emtinan, and Rasha Osman. "An Analysis of

the Inclusion of Environmental Cost Factors in

Software Cost Estimation Datasets." In 2018 IEEE

International Conference on Software Quality,

Reliability and Security Companion (QRS-C), pp. 623-

630. IEEE, 2018.

[7]. Boehm, B.W.; Abts, C.; Chulani, S. Software

development cost estimation approaches—A

survey.Ann. Softw. Eng. 2000, 10, 177–205.

[8]. Shanky Goyal, Navleen Kaur, Sachin Majithia,

Software Security: Role in SDLC, CGC International

Journal of Contemporary Technology and Research,

ISSN: 2582-0486 (online) Vol.-3, Issue-2, pp. 205-210,

2021.

[9]. Vera, T.; Ochoa, S.F.; Peroich, D. Survey of Software

Development Effort Estimation Taxonomies; Computer

Science Department, University of Chile: Santiago,

Chile, 2017.

[10]. Basha, S.; Dhavachelvan, P. Analysis of Empirical

Software Effort Estimation Models. Int. J. Comput. Sci.

Inf. Secur. 2010, 7, 69–77

[11]. Booch G., “The History of Software Engineering,”

IEEE Softw., vol. 35, no. 5, pp. 108–114, 2018,

[12]. Kneuper R., “Sixty years of software development life

cycle models,” IEEE Ann. Hist. Comput., vol. 39, no.

3, pp. 41–54, 2017

[13]. Kaur, R., Gupta, A. K., “Online Banking Customers

Information Security Awareness Model”, Proceedings

of 9th International Conference on Engineering and

Technology ICET – 2016, pp: 1-5, ISBN: 978-81-

925978-4-3, Melbourne, Australia, 19 March 2016

[14]. Arora R. and Arora N., “Analysis of SDLC Models,”

Int. J. Curr. Eng. Technol., vol. 6, no. 1, pp. 2277–

4106, 2016.

[15]. Sarker I. H., Faruque F., Hossen U., and Rahman A., “A

survey of software development process models in

software engineering,” Int. J. Softw. Eng. its Appl., vol.

9, no. 11, pp. 55–70, 2015.

